Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 677
Filter
1.
Foods ; 13(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731714

ABSTRACT

This study investigated the bactericidal effects of ultraviolet (UV) radiation, a high-voltage electric field (HVEF), and their combination on Escherichia coli. The results indicated that UV and combined disinfection were more effective with longer exposure, leading to significant reductions in microbial activity. Specifically, the single UV disinfection alone reduced activity by 3.3 log after 5 min, while combined disinfection achieved a 4.2 log reduction. In contrast, short-term HVEF treatment did not exhibit significant bactericidal effects, only achieving a reduction of 0.17 log in 5 min. Furthermore, prolonged exposure to both UV disinfection and an HVEF was found to damage cell membranes, ultimately causing cell death, while shorter durations did not. Despite rapid cell count decreases, flow cytometry did not detect apoptotic or necrotic cells, likely due to rapid cell rupture. This study suggests that combining UV radiation and an HVEF could be a promising approach for inhibiting bacterial reproduction, with HVEF enhancing UV effects. These findings provide insights for using combined HVEF and UV disinfection in food safety and preservation.

2.
Immunometabolism (Cobham) ; 6(2): e00041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38726338

ABSTRACT

Autoimmune diseases exhibit a pronounced yet unexplained prevalence among women. Vestigial-like family member 3 (VGLL3), a female-biased factor that promotes autoimmunity, has recently been discovered to assist cells in sensing and adapting to nutritional stress. This role of VGLL3 may confer a selective advantage during the evolution of placental mammals. However, the excessive activation of the VGLL3-mediated energy-sensing pathway can trigger inflammatory cell death and the exposure of self-antigens, leading to the onset of autoimmunity. These observations have raised the intriguing perspective that nutrient sensing serves as a double-edged sword in immune regulation. Mechanistically, VGLL3 intersects with Hippo signaling and activates multiple downstream, immune-associated genes that play roles in metabolic regulation. Understanding the multifaceted roles of VGLL3 in nutrient sensing and immune modulation provides insight into the fundamental question of sexual dimorphism in immunometabolism and sheds light on potential therapeutic targets for autoimmune diseases.

3.
Article in English | MEDLINE | ID: mdl-38776255

ABSTRACT

The integration of a silicon (Si) anode into lithium-ion batteries (LIBs) holds great promise for energy storage, but challenges arise from unstable electrochemical reactions and volume changes during cycling. This study investigates the influence of reduced graphene oxide (rGO) size on the performance of rGO-protected Si composite (Si@rGO) anodes. Two sizes of graphene oxide (GO(L) and GO(S)) are used to synthesize Si@rGO composites with a core-shell structure by spray drying and thermal reduction. Electrochemical evaluations show the advantages of the Si@rGO(S) anode with improved cycle life and cycling efficiency over Si@rGO(L) and pure Si. The Si@rGO(S) anode facilitates the formation of a stable LiF-rich solid electrolyte interface (SEI) after cycling, ensuring enhanced capacity retention and swelling control. Rate capability tests also demonstrate the superior high-power performance of Si@rGO(S) with low and stable resistances in Si@rGO(S) over extended cycles. This study provides critical insights into the tailoring of graphene-protected Si composites, highlighting the critical role of rGO size in shaping structural and electrochemical properties. The Si material wrapped by graphene with an optimal lateral size of graphene emerges as a promising candidate for high-performance LIB anodes, thereby advancing electrochemical energy storage technologies.

4.
Sci Rep ; 14(1): 11571, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773125

ABSTRACT

This study delves into expressing primary emotions anger, happiness, sadness, and fear through drawings. Moving beyond the well-researched color-emotion link, it explores under-examined aspects like spatial concepts and drawing styles. Employing Python and OpenCV for objective analysis, we make a breakthrough by converting subjective perceptions into measurable data through 728 digital images from 182 university students. For the prominent color chosen for each emotion, the majority of participants chose red for anger (73.11%), yellow for happiness (17.8%), blue for sadness (51.1%), and black for fear (40.7%). Happiness led with the highest saturation (68.52%) and brightness (75.44%) percentages, while fear recorded the lowest in both categories (47.33% saturation, 48.78% brightness). Fear, however, topped in color fill percentage (35.49%), with happiness at the lowest (25.14%). Tangible imagery prevailed (71.43-83.52%), with abstract styles peaking in fear representations (28.57%). Facial expressions were a common element (41.76-49.45%). The study achieved an 81.3% predictive accuracy for anger, higher than the 71.3% overall average. Future research can build on these results by improving technological methods to quantify more aspects of drawing content. Investigating a more comprehensive array of emotions and examining factors influencing emotional drawing styles will further our understanding of visual-emotional communication.


Subject(s)
Emotions , Facial Expression , Humans , Emotions/physiology , Male , Female , Young Adult , Happiness , Anger/physiology , Adult , Fear/psychology , Sadness
5.
Br J Pharmacol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698737

ABSTRACT

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.

6.
Nutr Diabetes ; 14(1): 29, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755142

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is a cluster of interconnected risk factors that significantly increase the likelihood of cardiovascular disease and type 2 diabetes. Taurine has emerged as a potential therapeutic agent for MetS. This meta-analysis of randomized controlled trials (RCTs) aimed to evaluate the effects of taurine supplementation on MetS-related parameters. METHODS: We conducted electronic searches through databases like Embase, PubMed, Web of Science, Cochrane CENTRAL, and ClinicalTrials.gov, encompassing publications up to December 1, 2023. Our analysis focused on established MetS diagnostic criteria, including systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C). Meta-regression explored potential dose-dependent relationships based on the total taurine dose administered during the treatment period. We also assessed secondary outcomes like body composition, lipid profile, and glycemic control. RESULTS: Our analysis included 1024 participants from 25 RCTs. The daily dosage of taurine in the studies ranged from 0.5 g/day to 6 g/day, with follow-up periods varying between 5 and 365 days. Compared to control groups, taurine supplementation demonstrated statistically significant reductions in SBP (weighted mean difference [WMD] = -3.999 mmHg, 95% confidence interval [CI] = -7.293 to -0.706, p = 0.017), DBP (WMD = -1.509 mmHg, 95% CI = -2.479 to -0.539, p = 0.002), FBG (WMD: -5.882 mg/dL, 95% CI: -10.747 to -1.018, p = 0.018), TG (WMD: -18.315 mg/dL, 95% CI: -25.628 to -11.002, p < 0.001), but not in HDL-C (WMD: 0.644 mg/dl, 95% CI: -0.244 to 1.532, p = 0.155). Meta-regression analysis revealed a dose-dependent reduction in DBP (coefficient = -0.0108 mmHg per g, p = 0.0297) and FBG (coefficient = -0.0445 mg/dL per g, p = 0.0273). No significant adverse effects were observed compared to the control group. CONCLUSION: Taurine supplementation exhibits positive effects on multiple MetS-related factors, making it a potential dietary addition for individuals at risk of or already experiencing MetS. Future research may explore dose-optimization strategies and potential long-term benefits of taurine for MetS management.


Subject(s)
Metabolic Syndrome , Randomized Controlled Trials as Topic , Taurine , Taurine/therapeutic use , Taurine/administration & dosage , Humans , Metabolic Syndrome/blood , Metabolic Syndrome/drug therapy , Metabolic Syndrome/prevention & control , Blood Glucose/analysis , Blood Glucose/drug effects , Blood Pressure/drug effects , Dietary Supplements , Triglycerides/blood , Cholesterol, HDL/blood , Risk Factors
7.
Inflamm Res ; 73(6): 897-913, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625657

ABSTRACT

OBJECTIVES AND DESIGN: As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS: We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS: Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS: This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.


Subject(s)
Interferon Regulatory Factor-3 , Interferon-gamma , Macrophages , Mice, Inbred C57BL , Mycobacterium tuberculosis , Protein Serine-Threonine Kinases , Proteins , Signal Transduction , Animals , Interferon-gamma/metabolism , Interferon-gamma/immunology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mycobacterium tuberculosis/immunology , Macrophages/immunology , Macrophages/metabolism , Interferon Regulatory Factor-3/metabolism , Mice , Proteins/genetics , Proteins/metabolism , I-kappa B Kinase/metabolism , Janus Kinases/metabolism , Oxidoreductases Acting on CH-CH Group Donors , Mice, Knockout , Tuberculosis/immunology , Lung/immunology , Lung/microbiology , Viperin Protein
8.
Adv Mater ; : e2311129, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557985

ABSTRACT

Air pollution threats to human health have increased awareness of the role of filter units in air cleaning applications. As an ideal energy-saving strategy for air filters, the slip effect on nanofiber surfaces can potentially overcome the trade-off between filtration efficiency and pressure drop. However, the potential of the slip effect in nanofibrous structures is significantly limited by the tight nanofiber stacks. In this study, trichome-like biomimetic (TLB) air filters with 3D-templated silicone nanofilaments (average diameter: ≈74 nm) are prepared based on an in situ chemical vapor deposition (CVD) method inspired by plant purification. Theoretical modeling and experimental results indicate that TLB air filters make significant use of the slip effect to overcome the efficiency-resistance tradeoff. The selectable filter class (up to U15, ≈99.9995%) allows TLB air filters to meet various requirements, and their integral filtration performance surpasses that of most commodity air filters, including melt-blown cloth, ePTFE membranes, electrospun mats, and glass fiber paper. The proposed strategy directly transforms commercial filter media and filters into TLB air filters using a bottom-up, one-step approach. As a proof-of-concept, reusable N95 respirators and air purifiers equipped with TLB air filters are fabricated, overcoming the limitations of existing filter designs and fabrication methods.

9.
Nano Lett ; 24(15): 4415-4422, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38577835

ABSTRACT

The increasing demand for personal protective equipment such as single-use masks has led to large amounts of nondegradable plastic waste, aggravating economic and environmental burdens. This study reports a simple and scalable approach for upcycling waste masks via a chemical vapor deposition technique, realizing a trichome-like biomimetic (TLB) N95 respirator with superhydrophobicity (water contact angle ≥150°), N95-level protection, and reusability. The TLB N95 respirator comprising templated silicone nanofilaments with an average diameter of ∼150 nm offers N95-level protection and breathability comparable to those of commercial N95 respirators. The TLB N95 respirator can still maintain its N95-level protection against particulate matter and viruses after 10 disinfection treatment cycles (i.e., ultraviolet irradiation, microwave irradiation, dry heating, and autoclaving), demonstrating durable reusability. The proposed strategy provides new insight into upcycle waste masks, breaking the existing design and preparation concept of reusable masks.


Subject(s)
COVID-19 , Respiratory Protective Devices , Humans , N95 Respirators , Masks , SARS-CoV-2
10.
JGH Open ; 8(4): e13055, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628386

ABSTRACT

Background and Aim: The microsurface structure reflects the degree of damage to the glands, which is related to the invasion depth of early gastric cancer. To evaluate the diagnostic value of quantitative microsurface structure analysis for estimating the invasion depth of early gastric cancer. Methods: White-light imaging and narrow-band imaging (NBI) endoscopy were used to visualize the lesions of the included patients. The area ratio and depth-predicting score (DPS) of each patient were calculated; meanwhile, each lesion was examined by endoscopic ultrasonography (EUS). Results: Ninety-three patients were included between 2016 and 2019. Microsurface structure is related to the histological differentiation and progression of early gastric cancer. The receiver operating characteristic curve showed that when an area ratio of 80.3% was used as a cut-off value for distinguishing mucosal (M) and submucosal (SM) type 0-II gastric cancers, the sensitivity, specificity, and accuracy were 82.9%, 80.2%, and 91.6%, respectively. The accuracies for distinguishing M/SM differentiated and undifferentiated early gastric cancers were 87.4% and 84.8%, respectively. The accuracy of EUS for distinguishing M/SM early gastric cancer was 74.9%. DPS can only distinguish M-SM1 (SM infiltration <500 µm)/SM (SM infiltration ≥500 µm) with an accuracy of 83.8%. The accuracy of using area ratio for distinguishing 0-II early gastric cancers was better than those of using DPS and EUS (P < 0.05). Conclusion: Quantitative analysis of microsurface structure can be performed to assess M/SM type 0-II gastric cancer and is expected to be effective for judging the invasion depth of gastric cancer.

11.
Adv Radiat Oncol ; 9(5): 101438, 2024 May.
Article in English | MEDLINE | ID: mdl-38567144

ABSTRACT

Purpose: In the United States, brain metastases (BMs) affect 10% to 20% of patients with cancer, presenting a significant health care challenge and necessitating intricate, high-cost treatments. Few studies have explored the comprehensive care cost for BMs, and none have used real insurance claims data. Partnering with a northeastern health care insurer, we investigated the true costs of various brain-directed radiation methods, aiming to shed light on treatment expenses, modalities, and their efficacy. Methods and Materials: We analyzed medical claims from Highmark Health-insured patients in Pennsylvania, Delware, West Virginia, and New York diagnosed with BMs (ICD-10 code C79.31) and treated with radiation from January 1, 2020 to July 1, 2022. Costs for radiation techniques were grouped by specific current procedural terminology claim codes. We subdivided costs into technical and physician components and separated hospital from freestanding costs for some modalities. Results: From January 1, 2020 to July 1, 2022, 1048 Highmark Health members underwent treatment for BMs. Females (n = 592) significantly outnumbered males (n = 456), with an average age of 64.4 years. Each member had, on average, 5.309 claims costing $2015 per claim. Total cost totaled $10,697,749. Per-treatment analysis showed that hippocampal avoidance intensity modulated radiation therapy was the costliest treatment at $47,748, followed by stereotactic radiation therapy at $37,230, linear accelerator stereotactic radiosurgery (SRS) at $30,737, Gamma Knife SRS at $30,711, and whole-brain radiation therapy at $5225. Conclusions: Whole-brain radiation therapy was the least costly radiation technique. Similar per-treatment prices for Gamma Knife and linear accelerator SRS support their use in treating BMs. Stereotactic radiation therapy in general was costlier on a per-use basis than SRS, prompting further scrutiny on its frequent use. Hippocampal avoidance intensity modulated radiation therapy was the costliest radiation therapy on a per-use basis by a moderate amount, prompting further discussion about its comparative cost effectiveness against other radiation modalities. This study underscores the importance of multiple considerations in treating BMs, such as tumor control, survival, side effects, and costs.

12.
Hematol Oncol ; 42(3): e3268, 2024 May.
Article in English | MEDLINE | ID: mdl-38676394

ABSTRACT

Mantle cell lymphoma (MCL) is an uncommon and incurable B-cell lymphoma subtype that has an aggressive course. Hepatitis B virus (HBV) infection has been associated with an increased risk for B-cell lymphomas, and is characterized by distinct clinical and genetic features. Here, we showed that 9.5% of MCL Chinese patients were hepatitis B surface antigen positive (HBsAg+). Compared to HBsAg-negative (HBsAg-) patients, HBsAg+ MCL patients had a greater incidence of elevated lactate dehydrogenase (LDH), but no difference was observed in the other clinical characteristics, including sex, age, ECOG ps, Ann Arbor stage, MIPI, extranodal involvement and Ki-67. The HD-AraC (high-dose cytarabine) regimen was the main first-line induction regimen for younger HBsAg+ patients, and cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) were used for elderly patients. HBsAg seropositivity was associated with a significantly shorter PFS than HBsAg seronegativity when patients were treated with rituximab or CHOP-based regimens. Compared with CHOP, the HD-AraC regimen was associated with longer PFS in HBsAg+ patients. Treatment with a Bruton tyrosine kinase inhibitor (BTKi) alone can also cause HBV reactivation. Among the 74 patients who underwent targeted deep sequencing (TDS), the nonsynonymous mutation load of HBsAg+ MCL patients was greater than that of HBsAg- MCL patients. HDAC1, TRAF5, FGFR4, SMAD2, JAK3, SMC1A, ZAP70, BLM, CDK12, PLCG2, SMO, TP63, NF1, PTPR, EPHA2, RPTOR and FIP1L1 were significantly enriched in HBsAg+ MCL patients.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Hepatitis B virus , Hepatitis B , Lymphoma, Mantle-Cell , Mutation , Humans , Male , Female , Middle Aged , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Aged , Hepatitis B virus/genetics , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Hepatitis B/complications , Hepatitis B/drug therapy , Hepatitis B/virology , Hepatitis B/pathology , Aged, 80 and over , Hepatitis B Surface Antigens/blood , Vincristine/therapeutic use , Vincristine/administration & dosage , Cyclophosphamide/therapeutic use , Cyclophosphamide/administration & dosage , Doxorubicin/therapeutic use , Doxorubicin/administration & dosage , Treatment Outcome
13.
Brain Res Bull ; 211: 110947, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614409

ABSTRACT

Trigeminal neuralgia (TN) is a highly debilitating facial pain condition. Magnetic resonance imaging (MRI) is the main method for generating insights into the central mechanisms of TN pain in humans. Studies have found both structural and functional abnormalities in various brain structures in TN patients as compared with healthy controls. Whereas studies have also examined aberrations in brain networks in TN, no studies have to date investigated causal interactions in these brain networks and related these causal interactions to the levels of TN pain. We recorded fMRI data from 39 TN patients who either rested comfortably in the scanner during the resting state session or tracked their pain levels during the pain tracking session. Applying Granger causality to analyze the data and requiring consistent findings across the two scanning sessions, we found 5 causal interactions, including: (1) Thalamus → dACC, (2) Caudate → Inferior temporal gyrus, (3) Precentral gyrus → Inferior temporal gyrus, (4) Supramarginal gyrus → Inferior temporal gyrus, and (5) Bankssts → Inferior temporal gyrus, that were consistently associated with the levels of pain experienced by the patients. Utilizing these 5 causal interactions as predictor variables and the pain score as the predicted variable in a linear multiple regression model, we found that in both pain tracking and resting state sessions, the model was able to explain ∼36 % of the variance in pain levels, and importantly, the model trained on the 5 causal interaction values from one session was able to predict pain levels using the 5 causal interaction values from the other session, thereby cross-validating the models. These results, obtained by applying novel analytical methods to neuroimaging data, provide important insights into the pathophysiology of TN and could inform future studies aimed at developing innovative therapies for treating TN.


Subject(s)
Brain , Magnetic Resonance Imaging , Trigeminal Neuralgia , Humans , Trigeminal Neuralgia/physiopathology , Trigeminal Neuralgia/diagnostic imaging , Female , Male , Magnetic Resonance Imaging/methods , Middle Aged , Brain/diagnostic imaging , Brain/physiopathology , Aged , Adult , Brain Mapping/methods , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Pain/physiopathology , Pain/diagnostic imaging , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging
15.
Small ; : e2301074, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659180

ABSTRACT

The coating of filter media with silver is typically achieved by chemical deposition and aerosol processes. Whilst useful, such approaches struggle to provide uniform coating and are prone to blockage. To address these issues, an in situ method for coating glass fibers is presented via the dopamine-mediated electroless metallization method, yielding filters with low air resistance and excellent antibacterial performance. It is found that the filtration efficiency of the filters is between 94 and 97% and much higher than that of silver-coated filters produced using conventional dipping methods (85%). Additionally, measured pressure drops ranged between 100 and 150 Pa, which are lower than those associated with dipped filters (171.1 Pa). Survival rates of Escherichia coli and Bacillus subtilis bacteria exposed to the filters decreased to 0 and 15.7%±1.49, respectively after 2 h, with no bacteria surviving after 6 h. In contrast, survival rates of E. coli and B. subtilis bacteria on the uncoated filters are 92.5% and 89.5% after 6 h. Taken together, these results confirm that the in situ deposition of silver onto fiber surfaces effectively reduces pore clogging, yielding low air resistance filters that can be applied for microbial filtration and inhibition in a range of environments.

16.
Front Pharmacol ; 15: 1370594, 2024.
Article in English | MEDLINE | ID: mdl-38515845

ABSTRACT

Background: Diabetes affects millions of people worldwide annually, and several methods, including medications, are used for its management; glucagon-like peptide-1 receptor agonists (GLP-1RAs) are one such class of medications. The efficacy and safety of GLP-1RAs in treating type 2 diabetes mellitus (T2DM) have been assessed and have been shown to significantly improve time in range (TIR) in several clinical trials. However, presently, there is a lack of real-world evidence on the efficacy of GLP-1RAs in improving TIR. To address this, we investigated the effect of GLP-1RA-based treatment strategies on TIR among patients with T2DM in real-world clinical practice. Methods: This multicenter, retrospective, real-world study included patients with T2DM who had previously used a continuous glucose monitoring (CGM) system and received treatment with GLP-1RAs or oral antidiabetic drugs (OADs). Patients who received OADs served as controls and were matched in a 1:1 ratio to their GLP-1RA counterparts by propensity score matching. The primary endpoint was the TIR after 3-6 months of treatment. Results: According to propensity score matching, 202 patients were equally divided between the GLP-1RA and OAD groups. After 3-6 months of treatment, the TIR values for the GLP-1RA and OAD groups were 76.0% and 65.7%, respectively (p < 0.001). The GLP-1RA group displayed significantly lower time above range (TAR) and mean glucose values than the OAD group (p < 0.001). Subgroup analysis revealed that, compared with the administration of liraglutide, the administration of semaglutide and polyethylene glycol loxenatide (PEG-Loxe) significantly improved TIR over 3-6 months of treatment (p < 0.05). Conclusion: These real-world findings indicate that GLP-1RA-based treatment strategies could be superior to oral treatment strategies for improving TIR among patients with T2DM and that once-weekly GLP-1RA may be more effective than a once-daily GLP-1RA. Clinical trial registration: http://www.chinadrugtrials.org.cn/index.html, identifier number ChiCTR2300073697.

17.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Article in English | MEDLINE | ID: mdl-38481813

ABSTRACT

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Subject(s)
Acute Kidney Injury , Fibroblast Growth Factor 1 , Humans , Mice , Animals , Fibroblast Growth Factor 1/genetics , Cyclin-Dependent Kinases/genetics , Kidney , Acute Kidney Injury/chemically induced , Genomic Instability
19.
Adv Radiat Oncol ; 9(2): 101367, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38405302

ABSTRACT

Purpose: We report on the feasibility and outcomes of liver stereotactic body radiation therapy (SBRT) for hepatocellular carcinoma (HCC) with single-photon emission computed tomography (SPECT) functional treatment planning in patients with Child-Pugh (CP) B/C cirrhosis. Methods and Materials: Liver SPECT with 99mTc-sulfur colloid was coregistered to treatment planning computed tomography (CT) for the guided avoidance of functional hepatic parenchyma during SBRT. Functional liver volumes (FLVs) obtained from SPECT were compared with anatomic liver volumes defined on the planning CT. Radiation dose constraints were adapted exclusively to FLV. Local control, toxicity, and survival were reported with at least 6 months of radiographic follow-up. Pre- and posttransplant outcomes were analyzed in a subset of patients who completed SBRT as a bridge to liver transplant. Model of End-Stage Liver Disease was used to score hepatic function before and after SBRT completion. Results: With a median follow-up of 32 months, 45 patients (58 lesions) with HCC and CP-B/C cirrhosis received SBRT to a median dose of 45 Gy (3-5 fractions). FLV loss (34%, P < .001) was observed in all patients, and the functional and anatomic liver volumes matched well in a control group of noncirrhotic/non-HCC patients. Despite marked functional parenchyma retraction, the amount of FLV on SPECT exposed to the threshold irradiation was significantly less than the CT liver volumes (P < .001) because of the optimized beam placement during dosimetry planning. Twenty-three patients (51%) successfully completed orthotopic liver transplant, with a median time to transplant of 9.2 months. With 91% in-field local control, the overall 2-year survival was 65% (90% after the orthotopic liver transplant), with no incidence of radiation-induced liver disease observed within 3 to 4 months or accelerated CP class migration from B to C within the first 6 months post-SBRT. Mean Model of End-Stage Liver Disease-Na score was not significantly elevated at 3-month intervals after SBRT completion. Conclusions: Functional treatment planning with 99mTc sulfur colloid SPECT/CT allows identification and avoidance of functional hepatic parenchyma in patients with CP-B/C cirrhosis, leading to low toxicity and satisfactory transplant outcomes.

20.
Plant J ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412303

ABSTRACT

The increased soil salinity is becoming a major challenge to produce more crops and feed the growing population of the world. In this study, we demonstrated that overexpression of OsDIR55 gene enhances rice salt tolerance by altering the root diffusion barrier. OsDIR55 is broadly expressed in all examined tissues and organs with the maximum expression levels at lignified regions in rice roots. Salt stress upregulates the expression of OsDIR55 gene in an abscisic acid (ABA)-dependent manner. Loss-function and overexpression of OsDIR55 compromised and improved the development of CS and root diffusion barrier, manifested with the decreased and increased width of CS, respectively, and ultimately affected the permeability of the apoplastic diffusion barrier in roots. OsDIR55 deficiency resulted in Na+ accumulation, ionic imbalance, and growth arrest, whereas overexpression of OsDIR55 enhances salinity tolerance and provides an overall benefit to plant growth and yield potential. Collectively, we propose that OsDIR55 is crucial for ions balance control and salt stress tolerance through regulating lignification-mediated root barrier modifications in rice.

SELECTION OF CITATIONS
SEARCH DETAIL
...